37 research outputs found

    M-partitions: Optimal partitions of weight for one scale pan

    Full text link
    An M-partition of a positive integer m is a partition with as few parts as possible such that any positive integer less than m has a partition made up of parts taken from that partition of m. This is equivalent to partitioning a weight m so as to be able to weigh any integer weight l < m with as few weights as possible and only one scale pan. We show that the number of parts of an M-partition is a log-linear function of m and the M-partitions of m correspond to lattice points in a polytope. We exhibit a recurrence relation for counting the number of M-partitions of m and, for ``half'' of the positive integers, this recurrence relation will have a generating function. The generating function will be, in some sense, the same as the generating function for counting the number of distinct binary partitions for a given integer.Comment: 11 page

    Ehrhart clutters: Regularity and Max-Flow Min-Cut

    Full text link
    If C is a clutter with n vertices and q edges whose clutter matrix has column vectors V={v1,...,vq}, we call C an Ehrhart clutter if {(v1,1),...,(vq,1)} is a Hilbert basis. Letting A(P) be the Ehrhart ring of P=conv(V), we are able to show that if A is the clutter matrix of a uniform, unmixed MFMC clutter C, then C is an Ehrhart clutter and in this case we provide sharp bounds on the Castelnuovo-Mumford regularity of A(P). Motivated by the Conforti-Cornuejols conjecture on packing problems, we conjecture that if C is both ideal and the clique clutter of a perfect graph, then C has the MFMC property. We prove this conjecture for Meyniel graphs, by showing that the clique clutters of Meyniel graphs are Ehrhart clutters. In much the same spirit, we provide a simple proof of our conjecture when C is a uniform clique clutter of a perfect graph. We close with a generalization of Ehrhart clutters as it relates to total dual integrality.Comment: Electronic Journal of Combinatorics, to appea
    corecore